23-01-2019 23:53

Среднее и мгновенное ускорение и скорость. Формулы. Пример задачи

В физике рассмотрением особенностей движения макроскопических твердых тел занимается кинематика. Этот раздел механики оперирует такими понятиями, как скорость, ускорение и путь. В данной статье мы сосредоточим свое внимание на вопросах, что такое мгновенное ускорение и скорость. Также рассмотрим, какими формулами можно определить эти величины.

Нахождение скорости

Об этом понятии известно каждому школьнику, начиная уже с младших классов. Все ученики знакомы с приведенной ниже формулой:

Геохимический барьер: определение термина, особенностиВам будет интересно:Геохимический барьер: определение термина, особенности

v = S/t.

Здесь S - путь, который преодолело движущееся тело за время t. Данное выражение позволяет рассчитать некоторую среднюю скорость v. Действительно, нам ведь неизвестно, каким образом двигалось тело, на каком участке пути оно перемещалось быстрее, а на каком медленнее. Даже не исключена ситуация, что в некоторой точке пути оно находилось в состоянии покоя какое-то время. Единственное, что известно, это пройденный путь и соответствующий ему временной отрезок.

В старших классах школ скорость, как физическая величина, рассматривается в новом свете. Ученикам предлагают следующее ее определение:

v = dS/dt.

Чтобы понять это выражение, нужно знать, как вычисляется производная от некоторой функции. В данном случае - это S(t). Поскольку производная характеризует поведение кривой в данной конкретной точке, то вычисляемая по формуле выше скорость называется мгновенной.

Ускорение

Формула ускорения

Если механическое движение является переменным, то для его точного описания необходимо знать не только скорость, но и величину, которая показывает, как она изменяется во времени. Это - ускорение, которое является производная по времени скорости. А та, в свою очередь, есть производная по времени пути. Формула мгновенного ускорения имеет вид:

a = dv/dt.

Благодаря этому равенству можно определить изменение величины v в любой точке траектории.

По аналогии со скоростью, среднее ускорение вычисляется по такой формуле:

a = Δv/Δt.

Здесь Δv - это изменение модуля скорости тела за промежуток времени Δt. Очевидно, что в течение этого периода тело способно как ускоряться, так и замедляться. Величина a, определенная из выражения выше, покажет лишь в среднем быстроту изменения скорости.

Движение с постоянным ускорением

Ускорение и скорость

Отличительной особенностью этого типа перемещения тел в пространстве является постоянство величины а, то есть a=const.

Это движение также называют равноускоренным или равнозамедленным в зависимости от взаимного направления векторов скорости и ускорения. Ниже такое перемещение рассмотрим на примере двух наиболее распространенных траекторий: прямой линии и окружности.

При перемещении по прямой линии во время равноускоренного движения мгновенная скорость и ускорение, а также величина пройденного пути, связаны следующими равенствами:

v = v0 ± a*t;

S = v0*t ± a*t2/2.

Здесь v0 - это значение скорости, которым тело обладало до появления ускорения a. Заметим один нюанс. Для данного типа перемещения бессмысленно говорить о мгновенном ускорении, поскольку в любой точке траектории оно будет одним и тем же. Иными словами, мгновенная и средняя величины его будут равны друг другу.

Что касается скорости, то первое выражение позволяет определить ее в любой момент времени. То есть это будет мгновенный показатель. Для расчета средней скорости необходимо воспользоваться представленным выше выражением, то есть:

v = S/t = v0 ± a*(t1 + t2)/2.

Здесь t1 и t2 - это моменты времени, между которыми вычисляют среднюю скорость.

Знак "плюс" во всех формулах соответствует ускоренному передвижению. Соответственно знак "минус" - замедленному.

Ускоренное и равномерное движение

При изучении движения по окружности с постоянным ускорением в физике используют угловые характеристики, которые аналогичны соответствующим линейным. К ним относится угол поворота θ, угловая скорость и ускорение (ω и α). Эти величины связаны в равенства, аналогичные выражениям равноускоренного движения по прямой линии, которые приводятся ниже:

ω = ω0 ± α*t;

θ = ω0*t ± α*t2/2.

При этом угловые характеристики связаны с линейными следующим образом:

S = θ*R;

v = ω*R;

a = α*R.

Здесь R - радиус окружности.

Вращение с угловым ускорением

Задача на определение среднего и мгновенного ускорения

Известно, что тело движется по сложной траектории. Его мгновенная скорость меняется по времени следующим образом:

v = 10 - 3*t + t3.

Чему равно мгновенное ускорение тела в момент t=3 (секунды)? Найти среднее ускорение за промежуток времени от двух до четырех секунд.

На первый вопрос задачи ответить несложно, если вычислить производную от функции v(t). Получаем:

a = |dv/dt|t=2;

а = |3*t2 - 3|t=2 = 24 м/с2.

Для определения среднего ускорения, следует воспользоваться таким выражением:

a = (v2 - v1)/(t2 - t1);

а = ((10 - 3*4 + 43) - (10 - 3*2 + 23))/2 = 25 м/c2.

Из расчетов следует, что среднее ускорение немного превышает мгновенное в середине рассмотренного временного промежутка.



Источник