17-01-2019 19:25

Матрицы: метод Гаусса. Вычисление матрицы методом Гаусса: примеры

Линейная алгебра, которая преподается в вузах на разных специальностях, объединяет немало сложных тем. Одни из них связаны с матрицами, а также с решением систем линейных уравнений методами Гаусса и Гаусса – Жордана. Не всем студентам удается понять эти темы, алгоритмы решения разных задач. Давайте вместе разберемся в матрицах и методах Гаусса и Гаусса – Жордана.

Основные понятия

Под матрицей в линейной алгебре понимается прямоугольный массив элементов (таблица). Ниже представлены наборы элементов, заключенные в круглые скобки. Это и есть матрицы. Из приведенного примера видно, что элементами в прямоугольных массивах являются не только числа. Матрица может состоять из математических функций, алгебраических символов.

Закон Максвелла. Распределение Максвелла по скоростямВам будет интересно:Закон Максвелла. Распределение Максвелла по скоростям

Для того чтобы разобраться с некоторыми понятиями, составим матрицу A из элементов aij. Индексы являются не просто буквами: i – это номер строки в таблице, а j – это номер столбца, в области пересечения которых располагается элемент aij. Итак, мы видим, что у нас получилась матрица из таких элементов, как a11, a21, a12, a22 и т. д. Буквой n мы обозначили число столбцов, а буквой m – число строк. Символ m × n обозначает размерность матрицы. Это то понятие, которое определяет число строк и столбцов в прямоугольном массиве элементов.

Необязательно в матрице должно быть несколько столбцов и строк. При размерности 1 × n массив элементов является однострочным, а при размерности m × 1 – одностолбцовым. При равенстве числа строчек и числа столбцов матрицу именуют квадратной. У каждой квадратной матрицы есть определитель (det A). Под этим термином понимается число, которое ставится в соответствие матрице A.

Еще несколько важных понятий, которые нужно запомнить для успешного решения матриц, – это главная и побочная диагонали. Под главной диагональю матрицы понимается та диагональ, которая идет вниз в правый угол таблицы из левого угла сверху. Побочная диагональ идет в правый угол вверх из левого угла снизу.

Виды матриц

Ступенчатый вид матрицы

Взгляните на картинку, которая представлена ниже. На ней вы увидите матрицу и схему. Разберемся сначала с матрицей. В линейной алгебре матрица подобного вида называется ступенчатой. Ей присуще одно свойство: если aij является в i-й строке первым ненулевым элементом, то все другие элементы из матрицы, стоящие ниже и левее aij, являются нулевыми (т. е. все те элементы, которым можно дать буквенное обозначение akl, где k>i, а l

Теперь рассмотрим схему. Она отражает ступенчатую форму матрицы. В схеме представлено 3 вида клеток. Каждый вид обозначает определенные элементы:

  • пустые клетки – нулевые элементы матрицы;
  • заштрихованные клетки – произвольные элементы, которые могут быть как нулевыми, так и ненулевыми;
  • черные квадратики – ненулевые элементы, которые называются угловыми элементами, «ступеньками» (в представленной рядом матрице такими элементами являются цифры –1, 5, 3, 8).

При решении матриц иногда получается такой результат, когда «длина» ступеньки оказывается больше 1. Такое допускается. Важна лишь «высота» ступенек. В матрице ступенчатого вида этот параметр должен быть всегда равным единице.

Ступенчатый вид матрицы

Приведение матрицы к ступенчатой форме

Любая прямоугольная матрица может быть преобразована до ступенчатого вида. Делается это благодаря элементарным преобразованиям. Они включают в себя:

  • перестановку строк местами;
  • прибавление к одной строке другой строки, при необходимости умноженной на какое-либо число (можно также производить операцию вычитания).

Рассмотрим элементарные преобразования в решении конкретной задачи. На рисунке ниже представлена матрица A, которую требуется привести к ступенчатому виду.

Задача на приведение матрицы к ступенчатому виду

Для того чтобы решить задачу, будем следовать алгоритму:

  • Удобно выполнять преобразования над такой матрицей, у которой первый элемент в верхнем углу с левой стороны (т. е. «ведущий» элемент) равен 1 или –1. В нашем случае первый элемент в верхней строке равен 2, поэтому поменяем первую и вторую строчки местами.
  • Выполним операции вычитания, затронув строки № 2, 3 и 4. Мы должны получить в первом столбце под «ведущим» элементом нули. Для достижения такого результата: из элементов строчки № 2 последовательно вычтем элементы строчки № 1, умноженные на 2; из элементов строчки № 3 последовательно вычтем элементы строчки № 1, умноженные на 4; из элементов строчки № 4 последовательно вычтем элементы строчки № 1.
  • Далее будем работать с укороченной матрицей (без столбца № 1 и без строки № 1). Новый «ведущий» элемент, стоящий на пересечении второго столбца и второй строки, равен –1. Переставлять строки не требуется, поэтому переписываем без изменений первый столбец и первую и вторую строки. Выполним операции вычитания, чтобы во втором столбце под «ведущим» элементом получить нули: из элементов третьей строчки последовательно вычтем элементы второй строчки, умноженные на 3; из элементов четвертой строчки последовательно вычтем элементы второй строчки, умноженные на 2.
  • Осталось изменить последнюю строку. Из ее элементов вычтем последовательно элементы третьей строки. Таким образом мы получили ступенчатую матрицу.

Алгоритм решения

Приведение матриц к ступенчатой форме используется в решении систем линейных уравнений (СЛУ) методом Гаусса. Перед рассмотрением этого метода давайте разберемся в терминах, имеющих отношение к СЛУ.

Матрицы и системы линейных уравнений

Матрицы применяются в разных науках. С использованием таблиц из чисел можно, например, решать линейные уравнения, объединенные в систему, методом Гаусса. Для начала давайте познакомимся с несколькими терминами и их определениями, а также посмотрим, как из системы, объединяющей несколько линейных уравнений, составляется матрица.

СЛУ несколько объединенных алгебраических уравнений, в которых присутствуют неизвестные в первой степени и отсутствуют члены, представляющие собой произведение неизвестных.

Решение СЛУ – найденные значения неизвестных, при подстановке которых уравнения в системе становятся тождествами.

Совместная СЛУ – такая система уравнений, у которой есть хотя бы одно решение.

Несовместная СЛУ – система уравнений, которая не имеет решений.

Как же составляется матрица на основе системы, объединяющей линейные уравнения? Существуют такие понятия, как основная и расширенная матрицы системы. Для того чтобы получить основную матрицу системы, необходимо вынести в таблицу все коэффициенты при неизвестных. Расширенная матрица получается путем присоединения к основной матрице столбца свободных членов (в него входят известные элементы, к которым в системе приравнивается каждое уравнение). Понять весь этот процесс можно, изучив картинку ниже.

Первое, что мы видим на картинке, – это систему, включающую в себя линейные уравнения. Ее элементы: aij – числовые коэффициенты, xj – неизвестные величины, bi – свободные члены (где i = 1, 2, …, m, а j = 1, 2, …, n). Второй элемент на картинке – основная матрица из коэффициентов. Из каждого уравнения коэффициенты записываются в строку. В итоге получается в матрице столько строк, сколько уравнений входит в систему. Количество столбцов равно наибольшему количеству коэффициентов в каком-либо уравнении. Третий элемент на картинке – расширенная матрица со столбцом свободных членов.

Матрицы и система линейных уравнений

Общая информация о методе Гаусса

В линейной алгебре методом Гаусса называется классический способ решения СЛУ. Он носит имя Карла Фридриха Гаусса, жившего в XVIII–XIX вв. Это один из величайших математиков всех времен. Суть метода Гаусса заключается в выполнении элементарных преобразований над системой линейных алгебраических уравнений. С помощью преобразований СЛУ приводится к равносильной системе треугольной (ступенчатой) формы, из которой можно найти все переменные.

Стоит отметить, что Карл Фридрих Гаусс не является первооткрывателем классического способа решения системы линейных уравнений. Метод был придуман намного раньше. Первое его описание встречается в энциклопедии знаний древнекитайских математиков, носящей название «Математика в 9 книгах».

Пример решения СЛУ методом Гаусса

Рассмотрим на конкретном примере решение систем методом Гаусса. Будем работать с СЛУ, представленной на картинке.

Задача на решение СЛУ

Алгоритм решения:

  • Прямым ходом метода Гаусса приведем систему к ступенчатой форме, но для начала составим расширенную матрицу из числовых коэффициентов и свободных членов.
  • Чтобы решить матрицу методом Гаусса (т. е. привести ее к ступенчатому виду), из элементов второй и третьей строчек последовательно вычтем элементы первой строчки. Получим в первом столбе под «ведущим» элементом нули. Далее поменяем вторую и третью строчки местами для удобства. К элементам последней строки прибавим последовательно элементы второй строчки, умноженные на 3.
  • В результате вычисления матрицы методом Гаусса мы получили ступенчатый массив элементов. На его основе составим новую систему линейных уравнений. Обратным ходом метода Гаусса находим значения неизвестных членов. Из последнего линейного уравнения видно, что x3 равен 1. Подставляем это значение во вторую строчку системы. Получится уравнение x2 – 4 = –4. Отсюда следует, что x2 равен 0. Подставляем x2 и x3 в первое уравнение системы: x1 + 0 +3 = 2. Неизвестный член равен –1.
  • Ответ: используя матрицу, метод Гаусса, мы нашли значения неизвестных; x1 = –1, x2 = 0, x3 = 1.

    Применение метода Гаусса

    Метод Гаусса – Жордана

    В линейной алгебре есть еще такое понятие, как метод Гаусса – Жордана. Он считается модификацией метода Гаусса и применяется при нахождении обратной матрицы, вычислении неизвестных членов квадратных систем алгебраических линейных уравнений. Метод Гаусса – Жордана удобен тем, что он в один этап позволяет решить СЛУ (без применения прямого и обратного ходов).

    Начнем с термина «обратная матрица». Допустим, у нас есть матрица A. Обратной для нее будет матрица A-1, при этом обязательно выполняется условие: A × A-1 = A-1 × A = E, т. е. произведение этих матриц равно единичной матрице (у единичной матрицы элементы главной диагонали являются единицами, а остальные элементы равны нулю).

    Важный нюанс: в линейной алгебре есть теорема существования обратной матрицы. Достаточное и необходимое условие существования матрицы A-1 – невырожденность матрицы A. При невырожденности det A (определитель) не равен нулю.

    Основные шаги, на которых основывается метод Гаусса – Жордана:

  • Взгляните на первую строку конкретной матрицы. Метод Гаусса – Жордана можно начинать применять, если первое значение не равно нулю. Если же на первом месте стоит 0, то поменяйте строки местами так, чтобы первый элемент имел отличное от нуля значение (желательно, чтобы число было ближе к единице).
  • Разделите все элементы первой строки на первое число. У вас получится строка, которая начинается с единицы.
  • Из второй строки вычтите первую строку, умноженную на первый элемент второй строки, т. е. в итоге у вас получится строка, которая начинается с нуля. Аналогичные действия выполните с остальными строчками. Для того чтобы по диагонали получались единицы, делите каждую строку на ее первый ненулевой элемент.
  • В итоге вы получите верхнюю треугольную матрицу методом Гаусса - Жордана. В ней главная диагональ представлена единицами. Нижний угол заполнен нулями, а верхний угол – разнообразными значениями.
  • Из предпоследней строки вычтите последнюю строчку, умноженную на необходимый коэффициент. У вас должна получиться строка с нулями и единицей. Для остальных строк повторите аналогичное действие. После всех преобразований получится единичная матрица.
  • Пример нахождения обратной матрицы методом Гаусса – Жордана

    Для вычисления обратной матрицы нужно записать расширенную матрицу A|E и выполнить необходимые преобразования. Рассмотрим простой пример. На рисунке ниже представлена матрица A.

    Задача на вычисление обратной матрицы

    Решение:

  • Для начала найдем определитель матрицы методом Гаусса (det A). Если этот параметр не окажется равным нулю, то матрица будет считаться невырожденной. Это позволит нам сделать вывод о том, что у A точно есть A-1. Для вычисления определителя преобразуем матрицу до ступенчатой формы элементарными преобразованиями. Подсчитаем число K, равное числу перестановок строк. Строки мы меняли местами всего 1 раз. Вычислим определитель. Его значение будет равно произведению элементов главной диагонали, умноженному на (–1)K. Результат вычисления: det A = 2.
  • Составим расширенную матрицу, добавив к исходной матрице единичную матрицу. Полученный массив элементов будем использовать для нахождения обратной матрицы методом Гаусса – Жордана.
  • Первый элемент в первой строке равен единице. Нас это устраивает, т. к. не нужно переставлять строки и делить данную строку на какое-нибудь число. Начинаем работать со второй и третьей строками. Чтобы первый элемент во второй строке превратился в 0, отнимем от второй строки первую строчку, умноженную на 3. Из третьей строчки вычтем первую (умножения не требуется).
  • В получившейся матрице второй элемент второй строчки равен –4, а второй элемент третьей строчки равен –1. Поменяем строки местами для удобства. Из третьей строчки вычтем вторую строчку, умноженную на 4. Вторую строчку разделим на –1, а третью – на 2. Получим верхнюю треугольную матрицу.
  • Из второй строчки отнимем последнюю строчку, умноженную на 4, из первой строчки – последнюю строчку, умноженную на 5. Далее вычтем из первой строчки вторую строчку, умноженную на 2. С левой стороны мы получили единичную матрицу. Справа находится обратная матрица.
  • Вычисление обратной матрицы

    Пример решения СЛУ методом Гаусса – Жордана

    На рисунке представлена система линейных уравнений. Требуется найти значения неизвестных переменных, используя матрицу, метод Гаусса – Жордана.

    Задача на решение уравнений

    Решение:

  • Составим расширенную матрицу. Для этого вынесем в таблицу коэффициенты и свободные члены.
  • Решим матрицу методом Гаусса – Жордана. Из строки № 2 вычтем строку № 1. Из строки № 3 вычтем строку № 1, предварительно умноженную на 2.
  • Поменяем местами строки № 2 и 3.
  • От строки № 3 отнимем строку № 2, умноженную на 2. Разделим полученную третью строку на –1.
  • От строки № 2 отнимем строку № 3.
  • От строки № 1 отнимем строку № 2, умноженную на –1. Сбоку у нас получился столбик, состоящий из цифр 0, 1 и –1. Из этого делаем вывод, что x1 = 0, x2 = 1 и x3 = –1.
  • Метод Гаусса - Жордана

    При желании можно проверить правильность решения, подставив вычисленные значения в уравнения:

    • 0 – 1 = –1, первое тождество из системы является верным;
    • 0 + 1 + (–1) = 0, второе тождество из системы является верным;
    • 0 – 1 + (–1) = –2, третье тождество из системы является верным.

    Вывод: используя метод Гаусса – Жордана, мы нашли правильное решение квадратной системы, объединяющей линейные алгебраические уравнения.

    Онлайн-калькуляторы

    Жизнь современной молодежи, обучающейся в вузах и изучающей линейную алгебру, значительно упростилась. Еще несколько лет назад находить решения систем методом Гаусса и Гаусса – Жордана приходилось самостоятельно. Одни студенты успешно справлялись с задачами, а другие путались в решении, делали ошибки, просили у однокурсников помощи. Сегодня можно при выполнении домашнего задания пользоваться онлайн-калькуляторами. Для решения систем линейных уравнений, поиска обратных матриц написаны программы, которые демонстрируют не только правильные ответы, но и показывают ход решения той или иной задачи.

    В интернете есть немало ресурсов со встроенными онлайн-калькуляторами. Матрицы методом Гаусса, системы уравнений решаются этими программами за несколько секунд. Студентам требуется только указывать необходимые параметры (например, количество уравнений, количество переменных).



    Источник