22-10-2018 19:39

Что такое красная граница фотоэффекта: понятие о фотоэффекте, уравнение Эйнштейна, пример решения задачи

В конце XIX века Генрих Герц открыл явление, позволяющее из световой энергии добывать электричество. Оно получило название фотоэффекта. В данной статье рассмотрим подробнее этот эффект, а также ответим на вопрос, что такое красная граница фотоэффекта.

Понятие о фотоэффекте

Перед тем, как ответить на вопрос, что такое красная граница фотоэффекта, необходимо поближе познакомиться с этим физическим явлением. Как можно объяснить это явление? Определение фотоэффекту можно дать следующее: это процесс образования свободных от атомных ядер электронов в результате облучения вещества светом.

Сумма бесконечной геометрической прогрессии убывающей и парадокс ЗенонаВам будет интересно:Сумма бесконечной геометрической прогрессии убывающей и парадокс Зенона

Этот эффект был открыт в 1887 году Герцем. В 1888 году русский физик, Александр Столетов, провел ряд опытов, в которых показал, что этот процесс возникает мгновенно после попадания света на пластину конденсатора. Также ученый установил первый закон фотоэффекта: увеличение интенсивности света приводит к линейному росту тока в цепи.

В 1905 году Эйнштейн опубликовал статью, в которой объяснил фотоэффект квантовым характером взаимодействия света с веществом.

Уравнение Эйнштейна для фотоэффекта

Современное понимание фотоэффекта можно описать в виде следующей модели: падая на вещество, фотон встречается с электроном некоторого атома, электрон полностью поглощает фотон, принимая от него всю энергию. Если эта энергия больше некоторого значения, то электрон выходит за область притяжения атомного ядра и становится свободным.

Описанный процесс выражается следующим равенством энергий:

h*v = A + Ek

Здесь h - постоянная Планка , v - частота фотона, A - энергия, которую нужно затратить, чтобы "вырвать" из атома электрон, Ek - кинетическая энергия свободного электрона.

Что такое красная граница фотоэффекта?

Обратим внимание на уравнение Эйнштейна, приведенное в предыдущем пункте. Из него следует, что если энергия фотона будет меньше работы выхода электрона, то никакого фотоэффекта происходить не будет. Это означает, что явление наблюдается только в том случае, если:

h*v ≥ A.

Частота v0, соответствующая величине A, получила название красной границы фотоэффекта. Длина волны, соответствующая ей, вычисляется по формуле:

λ0 = c/v0 или λ0 = c*h/A.

Здесь c - это скорость света. Поскольку рассматриваемое явление наблюдается только для длин волн света меньших, чем λ0, то становится понятным, почему это значение называют "красная граница" (красный цвет является верхней границей по длине волны для видимого человеком спектра).

Если говорить о λ0 для металлов, то облучение красным цветом не может привести к появлению фотоэффекта ни для одного из них, поскольку энергия "красных" фотонов слишком низка, чтобы "вырвать" электрон из атома. Наибольшим значением λ0 обладают щелочные металлы. Для них красная граница находится в области зеленого и желтого цвета (λ0≈520-580 нм).

Решение задачи на определение типа элемента

Разобравшись, что такое красная граница фотоэффекта, решим одну интересную задачу для закрепления полученных знаний. Это поможет лучше разобраться в этом физическом явлении.

В некоторой лаборатории решили воспользоваться фотоэффектом для определения вида химического элемента. До начала эксперимента было установлено, что это щелочной металл первой группы таблицы Д. И. Менделеева. Изменяя значение длины волны света, которым облучали металл, определили, что фотоэффект начинает наблюдаться при 525 нм. С каким элементом работали в лаборатории?

Выпишем соответствующую формулу для красной границы фотоэффекта:

λ0 = c*h/A

Откуда получаем:

A = c*h/λ0

Подставляя соответствующие константы и значение λ0 в выражение, получаем значение работы выхода электрона для неизвестного щелочного металла:

A = c*h/λ0 = 3*108*4,13567*10-15/(525*10-9) = 2,363 эВ

Отметим, что значение постоянной Планка было подставлено в единицах эВ*с.

Работа выхода электрона A является уникальной характеристикой для каждого химического элемента. Ее можно посмотреть в соответствующей таблице. Так, для щелочных металлов характерны такие значения в эВ:

  • Li 2,93;
  • Na 2,36;
  • K 2,29;
  • Cs 2,14;
  • Rb 2,26.

Эти данные показывают, что найденное нами значение A соответствует натрию.



Источник